Scientists 3D Printed First Ever Permanent Liquid Magnets
3D printed liquid magnets – Scientists at Berkeley Lab have created a new material that is both liquid and magnetic, opening the door to a new area of science in magnetic soft matter. Among other possible applications (such as liquid robots and even 3D entertainment), a 3D printed liquid magnet could lead to 3D printable magnetic liquid devices for the fabrication of flexible electronics or artificial cells that deliver targeted drug therapies to diseased cells.
Magnets are now part of our everyday lives, however, these are based on solid materials. Using a modified 3D printer, similar to the one that BMW and MIT used to 3D print a liquid in a gel a few months ago, a team of scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have created a liquid magnet. Their findings, published July 19 in the journal Science, could lead to a revolutionary class of printable liquid devices for a variety of applications – from artificial cells that deliver targeted cancer therapies to flexible liquid robots that can change their shape to adapt to their surroundings.

3D print first ever permanent liquid magnets
“We’ve made a new material that is both liquid and magnetic. No one has ever observed this before,” said Tom Russell, a visiting faculty scientist at Berkeley Lab and professor of polymer science and engineering at the University of Massachusetts, Amherst, who led the study (as reported by Berkeley Lab’s New Center). “This opens the door to a new area of science in magnetic soft matter.”
For the past seven years, Russell, who leads a program called Adaptive Interfacial Assemblies Towards Structuring Liquids in Berkeley Lab’s Materials Sciences Division and also led the current study, has focused on developing a new class of materials – 3D-printable all-liquid structures.
Russell and Xubo Liu, the study’s lead author, came up with the idea of forming liquid structures from ferrofluids, which are solutions of iron-oxide particles that become strongly magnetic in the presence of another magnet. “We wondered, ‘If a ferrofluid can become temporarily magnetic, what could we do to make it permanently magnetic, and behave like a solid magnet but still look and feel like a liquid?’” said Russell.
Jam session: 3D printed liquid magnets
To find out, Russell and Liu used a 3D printing technique they had developed with former postdoctoral researcher Joe Forth in Berkeley Lab’s Materials Sciences Division to print 1-millimeter droplets from a ferrofluid solution containing iron-oxide nanoparticles just 20 nanometers in diameter (the average size of an antibody protein).
Using surface chemistry and sophisticated atomic force microscopy techniques, staff scientists Paul Ashby and Brett Helms of Berkeley Lab’s Molecular Foundry revealed that the nanoparticles formed a solid-like shell at the interface between the two liquids through a phenomenon called “interfacial jamming.” This causes the nanoparticles to crowd at the droplet’s surface, “like the walls coming together in a small room jampacked with people,” said Russell.
To make them magnetic, the scientists placed the droplets by a magnetic coil in solution. As expected, the magnetic coil pulled the iron-oxide nanoparticles toward it.
But when they removed the magnetic coil, something quite unexpected happened.
Like synchronized swimmers, the droplets gravitated toward each other in perfect unison, forming an elegant swirl “like little dancing droplets,” said Liu, who is a graduate student researcher in Berkeley Lab’s Materials Sciences Division and a doctoral student at the Beijing University of Chemical Technology.
Somehow, these droplets had become permanently magnetic. “We almost couldn’t believe it,” said Russell. “Before our study, people always assumed that permanent magnets could only be made from solids.”
It’s still a magnet
All magnets, no matter how big or small, have a north pole and a south pole. Opposite poles are attracted to each other, while the same poles repel each other.
Through magnetometry measurements, the scientists found that when they placed a magnetic field by a droplet, all of the nanoparticles’ north-south poles, from the 70 billion iron-oxide nanoparticles floating around in the droplet to the 1 billion nanoparticles on the droplet’s surface, responded in unison, just like a solid magnet.

3D-printed-liquid-magnet
The iron-oxide nanoparticles jamming tightly together at the droplet’s surface were the key to this finding. With just 8 nanometers between each of the billion nanoparticles, together they created a solid surface around each liquid droplet.
Somehow, when the jammed nanoparticles on the surface are magnetized, they transfer this magnetic orientation to the particles swimming around in the core, and the entire droplet becomes permanently magnetic – just like a solid, Russell and Liu explained.
The researchers also found that the droplet’s magnetic properties were preserved even if they divided a droplet into smaller, thinner droplets about the size of a human hair, added Russell.
Among the magnetic droplets’ many amazing qualities, what stands out even more, Russell noted, is that they change shape to adapt to their surroundings. They morph from a sphere to a cylinder to a pancake, or a tube as thin as a strand of hair, or even to the shape of an octopus – all without losing their magnetic properties.
The droplets can also be tuned to switch between a magnetic mode and a nonmagnetic mode. And when their magnetic mode is switched on, their movements can be remotely controlled as directed by an external magnet, Russell added.
Liu and Russell plan to continue research at Berkeley Lab and other national labs to develop even more complex 3D-printed magnetic liquid structures, such as a liquid-printed artificial cell, or miniature robotics that move like a tiny propeller for noninvasive yet targeted delivery of drug therapies to diseased cells.
“What began as a curious observation ended up opening a new area of science,” said Liu. “It’s something all young researchers dream of, and I was lucky to have the chance to work with a great group of scientists supported by Berkeley Lab’s world-class user facilities to make it a reality,” said Liu.

15mm x 10mm Dic NdFeB Permanent Magnet N42 Ni
15mm x 10mm Dic NdFeB Permanent Magnet N42 Ni, Super Strong Rare Earth Sintered NdFeB Disk Magnet for Toy and Craft, NiCuNi Coated Neodymium Disc Permanent Magnets China Exporter 15mm x 10mm Dic NdFeB Permanent Magnet N42 Ni Technical Specifications: Item: NDN42-1510 Grade: N42 Material: Neodymium (NdFeB) Plating: Ni Shape: Disc, Disk, Round Dimension: Total Diameter […]3D printed liquid magnets

15mm x 8mm Dic NdFeB Strong Magnet N42 Ni
15mm x 8mm Dic NdFeB Strong Magnet N42 Ni, Super Strong Rare Earth Sintered NdFeB Disk Magnet for Toy and Craft, NiCuNi Coated Neodymium Disc Permanent Magnets China Exporter 15mm x 8mm Dic NdFeB Strong Magnet N42 Ni Technical Specifications: Item: NDN42-1508 Grade: N42 Material: Neodymium (NdFeB) Plating: Ni Shape: Disc, Disk, Round Dimension: Total Diameter […]3D printed liquid magnets

15mm x 6mm Sintered NdFeB Dic Magnet N45 Ni
15mm x 6mm Sintered NdFeB Dic Magnet N45 Ni, Super Strong Rare Earth Sintered NdFeB Disk Magnet for Toy and Craft, NiCuNi Coated Neodymium Disc Permanent Magnets China Exporter 15mm x 6mm Strong Sintered NdFeB Dic Magnet N45 Ni Technical Specifications: Item: NDN45-1506 Grade: N45 Material: Neodymium (NdFeB) Plating: Ni Shape: Disc, Disk, Round Dimension: Total […]

15mm x 5mm Strong Sintered NdFeB Round Magnet N45 Ni
15mm x 5mm Strong Sintered NdFeB Round Magnet N45 Ni, Super Strong Rare Earth Sintered NdFeB Disk Magnet for Toy and Craft, NiCuNi Coated Neodymium Disc Permanent Magnets China Exporter 15mm x 5mm Strong Sintered NdFeB Round Magnet N45 Ni Technical Specifications: Item: NDN45-1505 Grade: N45 Material: Neodymium (NdFeB) Plating: Ni Shape: Disc, Disk, Round Dimension: […]