Customized Magnets & Magnetic Assemblies Design

MPCO Magnetics provides complete magnetic solutions, engineering, design and consulting services. Our expert engineering team complements your design and manufacturing team to develop a permanent magnet or a complete magnetic assembly specific to your need and application. From single assemblies to complete designs, from sensor applications to permanent magnet motors, we have the equipment and skilled personnel to meet any project demands. We collaborate with your team, innovate through world-class design and accommodate with consistent, well-designed, flawlessly manufactured custom products. 


Complete engineering, design, magnetic evaluation and consulting services
Magnetic field mapping
Holding force calculations
Insert and over-molding designs
World-class design and instrumentation equipment
All new assembly development or reverse-engineer to match existing component
Rapid prototype guarantee
MPCO Magnetics’ experience accumulated through decades of magnetic designs has provided us valuable insight into the changing needs and rigorous demands of our customers. As a result, our engineers have developed a profound understanding of the design and performance of all types of magnetic materials to know which best fits your need and application.

Our Manufacturing Capabilities

We design and manufacture magnets from advanced materials, including, Neodymium, Alnico, Ferrite and Samarium Cobalt. Our custom magnets are utilized for a multitude of applications across many industries. Our North American facility is ISO 9001:2008 certified, and TS16949.  Learn More

Magnetization & Saturation

Magnetization & Magnetizing Equipment

The initial objective of magnetization is to magnetize to saturation, even if it will be later demagnetized for stabilization. Magnetization is accomplished by exposing the magnet to an externally applied field, which can be created by other permanent magnets or by currents in coils.

The use of permanent magnets is only practical for low coercivity or thin sections of material. Removal of the magnetized specimen from the permanent magnet magnetizer can be problematic since the field cannot be turned off and fringing fields may adversely affect the magnetization of the part.

The two most common types of magnetizing equipment are the DC and Capacitor Discharge magnetizers.

Saturation Fields Required

Some rare-earth magnets require very high magnetizing fields in the range of 20 to 50 kOe. These fields are difficult to produce and require large power supplies with carefully designed magnetizing fixtures. Isotropic bonded NdFeB materials require magnetic fields in the range of 60 kOe to be fully saturated. However, 98% of saturation may be achieved by fields near 30 kOe. Ceramics require fields near 10 kOe, while Alnicos require fields near 3 kOe for saturation. Because of the ease by which Alnico 5 can become inadvertently demagnetized, it is preferable for this material to be magnetized just prior to or even after final assembly of the magnets into the device.

Multiple Pole Magnetization

Multiple Pole Magnetization

Multiple Pole Magnetization


In certain cases, it may be desirable to magnetize a part with more than one pole on a single pole surface. This may be accomplished by constructing special magnetizing fixtures. Multiple pole magnetizing fixtures are relatively simple to build for Alnico and Ceramic, but require great care in design and construction for rare-earth materials. Magnetizing with multiple poles will sometimes eliminate the need for several discrete magnets, reducing assembly costs, although a cost will be incurred for building an appropriate magnetizing fixture. Multiple pole fixtures for rare-earth magnets may cost several thousand dollars to build, depending on the size of the magnet, the number of poles required, and the fields necessary to achieve saturation. our hot sale magnetic products: Multiple pole radial ring magnets

Magnet Materials

Magnets are an important part of our daily lives, serving as essential components in everything from electronic motors, loudspeakers, computers, disc players, microwave ovens and the family car to instrumentation, production equipment and research projects.

Their importance is typically overlooked because they make up the devices that we use, out of sight. Magnets function as transducers, transforming energy from one form to another, without any permanent loss of their own energy.

General Categories of Permanent Magnets:

Mechanical to Mechanical: Such as attraction and repulsion
Mechanical to Electrical: Such as power generation and microphones
Electrical to Mechanical: Such as motors, loudspeakers and charged particle deflection
Mechanical to Heat: Such as eddy current and hysteresis torque devices
Special Effects: Such as magnetoresistance, hall effect devices and magnetic resonance

Classes of Magnets:

There are four classes of modern commercialized magnets, each based on its material composition. Within each of these classes there is a family of grades with specific magnetic properties. The general classes are as follow:

Neodymium Iron Boron (NdFeB)
Samarium Cobalt (SmCo)
Ceramic Magnets
Alnico Magnets (AlNiCo)

These materials span a range of properties that accommodate a wide variety of application requirements. The following pages are intended to give a broad but practical overview of the factors that must be considered in selecting the proper material, grade, shape, and size of magnet for a specific application. The chart below shows typical values of the key characteristics for selected grades of materials.

magnetic solutions, engineering, design

magnetic solutions, engineering, design

Design Considerations

Basic problems of permanent magnet design involve estimating the distribution of magnetic flux in a magnetic circuit, which may include permanent magnets, air gaps, high permeability conduction elements, and electrical currents. Exact solutions of magnetic fields require complex analysis of many factors, although approximate solutions are possible based on certain simplifying assumptions. Obtaining an optimum magnet design often involves experience and trade offs.

3D Finite Element Analysis

3D Finite Element Analysis (FEA) modeling programs are used to analyze magnetic problems in order to arrive at solutions, which can then be tested and fine tuned against a prototype of the magnet structure. Using 3D FEA models flux densities, torques, and forces may be calculated. Results can be output in various forms, including plots of vector magnetic potentials, flux density maps, and flux pattern plots. The Design Engineering team at Magnet Applications has extensive experience in many types of magnetic designs and is able to assist in the design and execution of 3D FEA models.

Permanent Magnet Stability

The ability of a permanent magnet to support an external magnetic field results from small magnetic domains “locked” in position by crystal anisotropy within the magnet material. Once established, these positions are held until acted upon by forces exceeding those which locked the domains. The energy required to disturb the field produced by a magnet varies for each type of material. Permanent magnets can be produced with extremely high coercive forces (Hc) which will maintain domain alignment in the presence of high external magnetic fields. Stability can be described as the repeated magnetic performance of a material under specific conditions over its life.

Factors affecting magnet stability include time, temperature, reluctance changes, adverse fields, radiation, shock, stress, and vibration.

Magnetic Solutions

MPCO manufactures prototypes for high volume custom magnets and magnet assemblies. We specialize in providing Total Magnetic Solutions through injection and compression molding of Neodymium Iron Boron magnetic materials, as well as other rare-earth magnets. In addition, we stock a large inventory of Neodymium Iron Boron, Samarium Cobalt, Ferrite, Alnico and Flexible magnetic materials.

Our engineers and technicians work with clients in the automotive, defense, aerospace, semiconductor, medical, oil field equipment, and communications industries to design and manufacture critical magnetic components.