Electromagnetism & Magnetism Applications
Magnetism and moving electrons are closely related to each other. The three phenomena pertaining to electromagnetism are:
Moving electric charges produce magnetic fields.
Magnetic fields exert forces on moving electric charges.
Changing magnetic fields in the presence of electric charges cause electrons to flow
In 1820, Danish physicist Hans Oersted noted that electron flow produces a magnetic field. He had a current-carrying conductor pointing in a north-south direction. A compass was near the wire. He noted that, in the absence of electron flow, the alignment of the wire and the alignment of the compass needle were the same. However, each time the circuit was closed to allow electron flow, the compass needle aligned itself at a right angle to the conductor. See Figure 3. When the direction of electron flow was reversed, the compass needle pointed in the opposite direction while maintaining a 90° displacement to the conductor.
Figure 3. With a current-carrying conductor pointing in a north-south direction, the needle of a compass aligns parallel to the conductor with no electron flow and perpendicular to the conductor with electron flow.
Oersted’s findings led to speculation that the magnetic field of a magnet may interact with the magnetic field created by the flow of electrons through a conductor.
Magnetism Applications
Magnetism is used in a wide variety of applications in modern industry. The ability of an electric current to create a magnetic field is used in generators, electric motors, and solenoids. See Figure 4.
Figure 4. Magnetism is one of the most important mechanisms of producing electrical energy and is used in a wide variety of applications. Image Courtesy of SolPass
Regardless of the basic sources of potential energy that drive them, generators provide most of the electrical energy consumed. A generator (alternator) is a machine that converts mechanical energy into electrical energy by means of electromagnetic induction. Some of the common sources of potential energy used to drive generators include falling water, fossil fuels, and nuclear energy. A motor is a rotating device that converts electrical energy into mechanical energy. The torque (rotating mechanical force) on a motor shaft is used to produce work.
Electromagnetism made possible the invention of power tools. The variety of tools available include devices to drill, strike, saw, grind, sand, turn, cut, shape, and form materials. Power tools have taken much of the labor out of many tasks that previously could only be achieved through human power.
Magnetic radiation plays a large role in modern medicine. X-ray, CAT (computer-assisted tomography) scans, and MRI (magnetic resonance imaging) are a few of the applications. MRI began to be used in the early 1980s as a noninvasive way to see images of thin slices of the body. This is accomplished by measuring the characteristic magnetic behavior of specific nuclei in the water and fats of the body. These images help identify normal, damaged, and diseased tissue.
Another important use of electromagnetism is the generation of magnetic fields using an electrical current. Electromagnets are used as substitutes for permanent magnets in many applications. Advantages of electromagnets over permanent magnets are that the strength of electromagnets can be varied by varying the amount of electron flow, and the magnetism can be turned off by turning off the electron flow.
The advancement of the wave theory of electromagnetic radiation set the stage for modern communications. Electromagnetic fields of various frequencies make modern communications possible. Electron flow in a conductor results in a radiating magnetic field, and this field induces a current into any conductor it comes into contact with. Radio, television, and microwave transmissions of all types operate on this theory. Transmitters emit electromagnetic radiation from their antennas, and the signal induces the information into the antenna of the receiver.
Summarizing Energy Sources
Electrical energy can be created from friction, pressure, light, heat, chemical reactions, and magnetism. Friction creates electrical energy when two different types of materials are rubbed together. Pressure applied to piezoelectric materials produces a voltage directly proportional to the amount of applied strain. Some materials emit electrons when exposed to light and are used as a mechanism of converting light into electricity. Heat can also be used to generate electrical energy through the Seebeck or Peltier effect. Chemical reaction was the first reliable and usable method for producing electrical energy and is used in today’s batteries. Magnetism is the most commonly used mechanism of producing electrical energy. The relative motion between a magnet and a conductor is used to produce AC electricity.
Universal LED Light Bar Mounting Magnet Brackets Sucker Holder
3T 3000kgs Big Powerful Holding Electromagnet 250*80mm
Monopole Circle Round Single Pole Neodymium Magnets
Neodymium Running Race Number Marathon Magnet Black
Craftsman Magnetic Work Glove X Large Yellow
Custom Colorful Silicone Magnetic Hair Clips Wristband Bobby Pins Holder
China Manufacture High Quality Cobalt Samarium Round Cylinder Magnets